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The present paper discusses the feasibility of frequency analysis of X-ray reflectivity data, which have been 
used extensively to obtain information on density, layer thickness, surface and interface roughness for 
layered materials.  So far, the experimentally obtained data have been analyzed by least squares fitting to 
the theoretical reflectivity curve for assumed layered structures.  As is often the case with non-linear 
systems, the solution is not generally unique.  In fact, it is sometimes not easy to judge which structural 
parameters should be selected from several promising candidates that differ from each other to a fair extent 
but agree quite well with the experimental curve.  The problem becomes even worse when one is not 
confident in the model, i.e., the number of layers etc.  Assuming that several additional layers could 
improve the degree of fit, this raises the question of whether such a model should be accepted or not.  The 
advantages of using frequency analysis, such as Fourier and Wavelet transform techniques, is that one can 
start from analysis which does not rely on the model too much.  As the analysis gives a rough sketch of 
the electron density profile of the sample, one can decide which models should and should not be chosen.  
Furthermore, filtering specific frequency components of the data can help to see some morphology changes 
in the specific interface. 
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1. INTRODUCTION 

X-ray reflectivity is a powerful method for the 
non-destructive analysis of the structure along the 
depth of thin films and layered materials [1-6].  As 
the interference fringes observed in the reflectivity 
curve relate in both sensitivity and quantity to the 
small changes in layer thickness, some consideration 
has even been given to standardizing the technique to 
determine layer thickness in industrial applications [7, 
8].  Data analysis, so far, has been very frequently 
done by so-called whole-pattern fitting of the 
theoretical reflectivity based on Parratt’s formalism 
[9] combined with Nevot-Croce roughness 
approximation [10].  The method basically works 
very well as long as the assumed model is good 
enough. 

However, generally, the solution devised using 
non-linear least squares fitting is not unique.  There 
are also a number of local minima.  The physical 
meaning of the parameters obtained needs to be 
examined, because these are not always justified 
based purely on a good fit.  As several authors have 
reported [11-13], the use of genetic algorithms could 
be a help in some cases.  On the other hand, as is the 
case for some complicated systems including soft 
matter, it is sometimes not easy to have a reliable 
model for fitting.  Even the number of layers could 
be unknown or uncertain.  Sometimes interfaces are 
graded, and thus unsuitable for description under 
Nevot-Croce’s Gaussian-type roughness.  One 
should be careful, because some good fits are 
possible even in such cases. 

The present paper intends to demonstrate that the 
use of frequency analysis, such as Fourier and 
Wavelet transform techniques, could sometimes help 

in carrying out analysis which does not rely on the 
model too much.  The analysis gives a rough sketch 
of the electron density profile of the sample.  One 
can use this to prepare a reasonable model to attempt 
fitting to the experimentally obtained reflectivity 
curve.  Otherwise it is also possible to make direct 
use of such a profile for some inversion approach 
based on phase guessing [14, 15].  Moreover, as 
each frequency component of the interference fringes 
corresponds to each pair of interfaces, frequency 
filtering would be useful for observing specific 
interfaces in multilayer cases.  The combined use of 
the above frequency analysis and conventional fitting 
procedures would make X-ray reflectivity data more 
feasible for realistic analysis. 
 
2. MANUAL FREQUENCY ANALYSIS 

It was early in the 20th century that determination 
of layer thickness was first attempted by X-ray 
reflectivity.  Figure 1 shows the X-ray reflectivity 
curve of a 142 nm thick Ni layer on glass, reported by 
Kiessig in 1931 [16, 17].  The data were obtained by 
photographic recording, and then converted to X-ray 
intensity.  At that time, direct reading of the 
frequency was the only possible analysis.  The 
thickness was determined by simply reading the angle 
positions of each interference fringe maxima (or 
minima).  The angle of the m th (m is integer) 
maxima, θmax(m), and minima θmin(m), can be given 
as follows: 
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where d, λ and θc are layer thickness and X-ray 
wavelength, critical angle, respectively.  Here, when 
the density of the layer is lower than that of the 
substrate, the formulas for θmax(m) and θmin(m) are 
changed for each other.  One can plot θmax(m)2 as a 
function of m2 (or (m+1/2)2), and then the slope and 
the intercept of the straight line give (λ/2d)2 and θc

2, 
respectively.  As the relationship is simple and 
feasible, the method can be used even in modern 
industrial applications.  When only the layer 
thickness is the main interest, this method works well, 
because it does not need to assume any models for 
whole pattern fitting.  It is interesting that several 
papers on the applications of manual frequency 
analysis were published [18, 19] just after the 
completion of Parratt’s theory of X-ray reflectivity 
from multilayers. 
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Here qc is the critical scattering vector.  Though the 
exact expression of γ2 includes the absorption term, 
this becomes negligible, when R(qz) is clearly smaller 
than 1.  Therefore, in the qz region where 
interference fringes are observed, the Eq. (4) can be 
rewritten as follows: 

 
3. FOURIER TRANSFORM 
3.1 Fundamental issues 

The Fourier transform technique [20-29] is an 
extension of the manual frequency analysis described 
in the previous section.  According to Parratt’s 
formalism [9], X-ray reflectivity can be calculated by 
using a recursive equation.  The reflection 
coefficient for the interface between (n-1) th and n th 
layers, Rn-1,n can be given using that for deeper 
interface, Rn,n+1 as follows: 
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where an-1 and Fn-1,n are the amplitude factor for the 
(n-1) th layer and the Fresnel coefficient for the (n-1, 
n) interface, respectively.  Let’s look at the simplest 
case – single film on the substrate, where the medium 
numbers 1, 2, and 3 are vacuum (air), film, and the 
substrate, respectively.  Here, the film thickness is 
d2.  The X-ray reflectivity, which is a function of 
scattering vector qz (=4πθ/λ), becomes the following: 

)1)(1(
)cos(2

)( 2
3,2

2
2,1

23,22,1
2
3,2

2
2,1

FF
dqFFFF

qR z
z −−

′++
=′       (6) 

As the oscillating part is a simple cosine function of 
qz'd2, one can obtain a single peak corresponding to 
d2 by its Fourier transform [20-22].  For the sake of 
simplicity, surface and interface roughness are not 
included in the equation.  However, roughness does 

Fig.2 Thickness determination of SiO2 layer (50.1 nm) 
formed on Si substrate by Fourier transform of X-ray 
reflectivity with 8 keV synchrotron photons. (a) X-ray 
reflectivity plotted as a function of qz' considering 
critical angle correction. (b) Magnitude of 
Fourier transform of the oscillating part 
extracted from the curve (a).  (Reproduced with 
permission from [21], Fig.2) 

Fig.1 X-ray reflectivity curve reported in the early days 
of X-ray physics.  The sample is Ni 142 nm thin film 
prepared on glass substrate, and Ni Kα1 X-rays (0.1655 
nm) are used.  (Reproduced with permission from 
[17], Fig.2 (photo shown as inset) and Fig.3 (curve)) 



not affect the periodicity of the fringes.  The 
influence is restricted to dampening the amplitude of 
the interference fringes and modifying the whole 
decay rate.  Figure 2 shows an example for the case 
of SiO2/Si.  First, one should plot the data as a 
function of qz', and then estimate an average curve 
(shown as a dashed line) in logarithmic scale.  Then, 
the oscillation can be extracted by normalization.  
The magnitude of Fourier transform has a sharp 
symmetrical peak.  The position agrees with the 
layer thickness. 

If a wrong critical angle is given, what happens?  
Here, errors in qz' and qc are Δqz' and Δqc, 
respectively.  Then the contents of the cosine part 
become as follows: 
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This results in a shift of the peak position, and also 
makes the peak asymmetrical.  In other words, only 
when Δqc=0 one can obtain a perfectly symmetrical 
peak with no shift.  It is possible to find this correct 
condition by changing qc with a step of around 0.5~1 
×10-3 nm-1, which corresponds to ca. 0.1 mrad step 
for 8 keV X-rays. 

The above frequency analysis by Fourier transform 
is even more useful in cases where there are rather 
many layers.  X-ray reflectivity for double films on 
the substrate can be written as follows [22]: 
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In this case, the factor D is negligible, and therefore, 
3 frequency components will appear in the 
interference fringes of the reflectivity curve.  They 
basically correspond to each layer thickness and the 
sum.  To determine d2 and d3, the oscillation in 
R(qz,2') and R(qz,3'), respectively, should be Fourier 
transformed.  Here qz,n' (n=2 or 3) is given as 
follows: 
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When the layer number becomes N-1, the number of 
interfaces is N.  The number of frequency 
components included in the interference fringes is 
NC2=N(N-1)/2.  Therefore, basically it is possible to 
know N even for completely unknown samples, 
although there appear to be limitations where several 
layers are of the same or very similar thickness. 

Figure 3 shows the calculation in the case of 
Cu[50nm]/Al[23nm]/Au[12nm]/Si.  Although 
Fourier transform for R(qz,2') gives a correct value 
only for d2, i.e., Cu layer thickness, other peaks for 

Al and Au are not so bad.  Besides Fourier 
transform for R(qz,3') and R(qz,4'), one could just try 
whole pattern fitting by using such layer thickness as 
initial values.  As shown in the inset of Fig.3, in this 
case, the first derivative of the electron density gives 
the position of the interface.  In the kinematical 
approach, as the derivative of electron density profile 
is related to Fourier transform [3,5], inverse Fourier 
transform of the power spectrum, i.e., autocorrelation 
function can be discussed similarly.  Some good 
instructive accounts on the relationship between the 
present frequency analysis and the electron density 
profile are found elsewhere [24].  

For the above frequency analysis, one can employ 
the ordinary Cooley-Tukey FFT algorithm [30].  Let 
us assume that the extracted oscillating part has the 
data-point interval of Δqz' and the FFT’s spectrum 
size is M.  Then in Fourier space, the data-point 
interval Δd and the spectrum size dmax are given as 
follows: 
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Fig.3 Simulation of X-ray reflectivity curve for 
Cu[50nm]/Al[23nm]/Au[12nm]/Si case.  (a) X-ray 
reflectivity, (b) Magnitude of Fourier transform, after
qz' correction with θc = 6.8 mrad (for Cu).  The rms 
roughness for the surface, the Cu/Al, Al/Au, and
Au/Si interfaces are assumed as 0.5, 0.5, 0.5 and 
0.35 nm, respectively.  In the inset of (a), the 
electron density profile (dashed line) and the derivative 
(solid line) are drawn.  Here, the number of interfaces
is 4, and one can see 6 peaks in Fourier transformed 
data.  The peak for Cu gives correct thickness, 50nm.



When M is 14 bit (214=16384), the typical values 
would be Δd=0.1~0.2 nm and dmax=0.8~1.6μm, 
respectively.  To give the layer thickness with high 
resolution to the order of 0.01 nm, M needs to be 
larger.  On the other hand, the peak position in 
Fourier space can be determined by direct integral 
calculation, instead of FFT algorithm [20]. 
 
3.2 Applications and further developments 

Frequency analysis based on Fourier transform 
was first reported in 1991 [20-22].  Subsequently, 
quite a few research groups rediscovered the method 
independently, and reached the same conclusion 
[23-29].  Recently, some interesting extensions 
using anomalous dispersion were reported [31].  As 
the method is already mature, further applications 
will be of great importance [32-34]. 

Figures 4 and 5 show the effect of heating on a 
Fe[20nm]/Si sample, studied by X-ray reflectivity. 
One can see clear changes in the frequency of the 
interference fringe.  As indicated in Fourier space, 
layer thickness changes by interdiffusion at the 
interface.  Though the interface was at 20 nm 
originally, the position moved to 40 nm.  One can 
thus understand how powerful this type of frequency 
analysis is.  In addition to layer thickness, it is 
possible to obtain further information on the structure, 
as an electron density profile, or the list of roughness 
values.  Prior knowledge of the number of layers 
and total thickness is very helpful in obtaining a 
satisfactory model with some good initial parameters 
for whole pattern fitting.  As for the interdiffusion 
observed in (b) in Figs. 4 and 5, the authors also 
employed secondary ion mass spectroscopy (SIMS) 
to confirm the results.  Perhaps another promising 
alternative would be the measurement of Fe Kα 
fluorescent X-rays as a function of the glancing angle 
[1,35,36], during the measurement of X-ray 
reflectivity shown in Fig.4. 
 

4. WAVELET TRANSFORM 
4.1 Beyond Fourier transform 

As described earlier, frequency analysis using 
Fourier transform is simple, quick and feasible.  
However, there appear to be some problems.  
Fourier transform is usually done with a single wide 
window, i.e., for almost all the measured q-range.  
This means that the results just tell us the list of layer 
thicknesses in the sample, but generally do not give 
the layering order.  For example, in the case of Fig.3 
(b), it is not always clear which layer, Au or Al, is the 
2nd layer (although in this case one could estimate the 
order to some extent by evaluating the magnitude of 
the peak).  Other possible concerns are further 
analysis other than just determination of the layer 
thickness.  As such concerns mainly reflect the very 
wide single window for Fourier analysis, one might 
think about analysis using narrowly divided sliding 
windows.  This is known as short segment (or time) 
Fourier transform (SSFT or STFT) in the field of 
electronic signal processing [37].  However, the 
SSFT of X-ray reflectivity would suffer from very 
low quality spectra with substantial noise. 

Therefore, one promising solution is Wavelet 
transform [38, 39].  The method uses sliding 

spectral windows in the same way as SSFT, but each 
width can be changed automatically depending on the 
amplitude.  This helps to keep the signal-to-noise 
ratio to an acceptable level.  The Wavelet transform 
of the X-ray reflectivity data R(qz') can be defined as 
follows: 

Fig.4 X-ray specular (s) and off-specular (o) 
reflectivity measured for iron thin film deposited on 
silicon substrate; (a) before heating, (b) after heating.
(Reproduced with permission from [32], Fig.1) 

Fig.5 Frequency analysis of X-ray reflectivity data 
shown in Fig.4; before (a) and after (b) heating.  The 
total thickness before heating was 20 nm as shown in 
(a). The broad peak in (b) indicated by arrow suggests 
that there is interdiffusion at the Fe/Si interface, 
leading to the increase of effective film thickness to 40
nm. (Reproduced with permission from [32], Fig.2) 



4.2 Frequency filtering 
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1),(           (12) As the X-ray reflectivity curve is a complicated 
mixture of information on the surface and all 
interfaces, generally, analysis only for the specific 
interface is not easy.  There has been an apparent 
limitation in the case of the whole pattern fitting 
approach.  Therefore, the use of Wavelet 
transform’s capability of frequency filtering is a very 
interesting direction [39-41].  It gives detailed 
analysis of the specific interface of the multilayer 
case. 

where a and b are the scaling and position parameters, 
respectively, of the mother wavelet function g.  Note 
that Eq. (12) essentially represents the autocorrelation 
function, exhibiting peak at qz'=b, when the 
parameter a is fixed.  So far, various mother wavelet 
functions have been developed, with one of the 
simplest being the Mexican Hat wavelet, which can 
be written as follows: 
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transform, first one needs to choose the layer, by 
fixing b parameter as some peak position.  Then the 
Wavelet transform becomes WT(a), a simple function 
of the scale parameter, a.  On the other hand, layer 
selection corresponds to specifying a pair of 
interfaces, above or below the layer.  Here, if we 
call each roughness σ1 and σ2, respectively, then one 
can define a new parameter, σ12= (σ1

2+σ2
2)1/2, which 

may be termed ‘layer roughness’.  When some 
kinematical approach is accepted, WT(a) is 
simplified, and is expressed by only 2 variables 
including σ12.  Then the curve fitting can be done 
for experimental Wavelet transformed data.  
Accordingly σ12 can be determined without 
assumptions on the other structure parameters of the 
layered materials.  The method is feasible, but 
substantially in need of further development. 

As is clear from the function form, it is suitable for 
simple cosine type oscillations observed in X-ray 
reflectivity. 

Advanced frequency analysis of X-ray reflectivity 
data, based on the above Wavelet transform, was first 
reported in 2000, by Smigel and Conet [38].  
Figures 6 and 7 show the analysis of X-ray 
reflectivity data for oxidized iron thin film during 
heating.  In this case, the interference fringes 
include 3 frequency components, which indicate 2 
layers on the substrate.  As discussed earlier, 
Fourier transform can show this clearly with ease, but 
does not give the order, either which comes top or 2nd.  
On the other hand, with Wavelet transform, one can 
do frequency analysis during qz' scan, leading to 
quantitative knowledge on qz' or grazing angle, and 
layer thickness.  As illustrated in Fig.7, a 3D picture 
of the autocorrelation function demonstrates that the 
top and the 2nd layers are 8nm and 30.7 nm, 
respectively, because the latter appears at a higher 
grazing angle than around 0.25 deg. 

 
5. CONCLUSIONS AND FINAL REMARKS 

In summary, frequency analysis of X-ray 
reflectivity data is feasible and significant, 
particularly when the main interest is focused on 

 

Fig.7 Wavelet transform of X-ray reflectivity for the 
sample with 300 min heating time shown in Fig.6. The 
autocorrelation function (ACF) of the derivative of 
electron density profile is given in 3D picture, as a 
function of both thickness and grazing angle, i.e., qz'. 
As the frequency components found in interference 
fringes correspond to the layer thickness, this shows 
when (at which angle) each frequency component 
appears.  One can see that 8 nm is visible all the time, 
but 30.7 nm appears later at a higher angle than 
around 0.25 deg (Reproduced with permission from 
[38], Fig.9) 

Fig.6 X-ray specular reflectivity of oxidized iron thin 
film on synthetic quartz substrate with different heating 
time (TH). (Reproduced with permission from [38], 
Fig.7) 



specific layers and/or interfaces, and when some 
careful analysis is necessary without depending too 
much on models that assume many uncertain 
parameters.  Historically, manual frequency analysis 
has played an important role since Kiessig’s 
discovery of the interference fringe, and is still useful 
even in the 21st century, for the analysis of the single 
layer case.  Modern frequency analysis uses Fourier 
and Wavelet transforms.  This can give the sketch of 
a whole layered structure quickly without assuming 
any models, and the frequency filtering capability 
helps when looking at a specific interface.  On the 
other hand, conventional least squares fitting is 
indispensable in many cases to determine all structure 
parameters for the given model.  Their combined 
use will make X-ray reflectivity more reliable in 
realistic analysis. 
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