Novel approach to see topographic shape of buried interfaces - grazing resonant soft X-ray scattering

A team led by Professor Harald Ade (North Carolina State University, USA) has reported that grazing resonant soft X-ray scattering (GRSoXS), a technique measuring diffusely scattered soft X-rays from grazing incidence, can reveal the statistical topography of buried thin-film interfaces. So far, in wide variety of material systems, the internal structures of layered systems, particularly interfaces between different materials, have been critical to their functions. However, the analysis of buried interfaces has always presented some difficulties. It is known that X-ray electric field intensity distribution along the depth can be controlled by a change of either the incidence angle or the X-ray energy. The research team was able to manipulate it by scanning the X-ray energy, and succeeded in identifying the microstructure at different interfaces of a model polymer bilayer system such as PMMA/PEG. The authors attempted to gauge the feasibility of the technique for further practical systems like an organic thin-film transistor, PS[100nm]/PBTTT[50nm]/Si. For more information, see the paper, "Topographic measurement of buried thin-film interfaces using a grazing resonant soft x-ray scattering technique", E. Gann et al., Phys. Rev. B90, 245421 (2014).

​​

About Us

Conference Info

Powered by Movable Type 7.902.0

Monthly Archives