Spectrally narrow X-ray pulses by manipulating Mössbauer resonance

A research group led by Professor Jorg Evers (Max Planck Institute for Nuclear Physics, Heidelberg, Germany) has recently reported a method for narrowing the spectral width of X-ray pulses by the use of subluminal light propagation. So far, in visible light, slow group velocity such as 17 m/sec has been observed in low temperature sodium gas at 435 nK (see, L. V. Hau et al., Nature, 397, 594 (1999)). The authors intend a similar effect in X-ray wavelength photons by manipulating the optical response of the 14.4 keV Mössbauer resonance of 57Fe nuclei. The method combines coherent control, as well as cooperative and cavity enhancements of light-matter interaction in a single setup. It was found that the reduced group velocity of the obtained X-ray pulses is lower than 10-4 of the speed of the light. For more information, see the paper, "Tunable Subluminal Propagation of Narrow-band X-Ray Pulses", K. P. Heeg et al., Phys. Rev. Lett. 114, 203601 (2015).

​​

About Us

Conference Info

Powered by Movable Type 7.902.0

Monthly Archives