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ABSTRACT 

X-ray fluorescence holography (XFH) produces direct three-dimensional atomic images 

around atoms emitting fluorescent X-rays. However, only the holograms of single crystals, 

whose atomic configurations are already known by single crystal X-ray studies, have been 

measured because of the low intensity of the X-ray beam. We used XFH tequniques to image the 

atomic structure around zinc (Zn) atoms doped with gallium arsenide (G&s) using a synchrotron 

beam at Spring-8. The Zn Ka X-ray fluorescence intensity was measured as a function of 

azimuthal and polar angles of a detector, to produce a holographic pattern. The local atomic 

structure around Zn atoms was successfully reconstructed by a Fourier transform of the 

holograms. 
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INTRODUCTION 

A fluorescent X-ray photon emitted from a single atom reaches the detector directly 

without interacting with other atoms in the sample, or by elastic scattering by neighboring atoms. 

Interference between these two processes produces anisotropy of X-ray fluorescence intensity, 

which is called X-ray fluorescence holography (XFH). XFH makes it possible to obtain direct 

three-dimensional atomic images by use of a Fourier Transform method. In 1948, a holographic 

method was first proposed and performed by Gabor,’ in order to improve the spatial resolution of 

an electron microscope image. Sz6ke2 pointed out that photon excited atoms within a sample 

emit highly coherent outgoing electrons or fluorescent X-rays, and he proposed the concept of 

atomic-resolution holography using an interference effect between the direct waves from the 

photon excited atom (reference wave) and the waves scattered by neighboring atoms (objective 

waves) (Fig. 1 (a)). Electron emission holography3,4 was thus established for studying surface 

structure. The internal structure of a solid can not be imaged because of complications produced 

by the highly anisotropic nature of the electron scattering process and multiple scatterting effects. 

Inner-source X-ray holography has recently become the preferred method of imaging because X- 

ray scattering produces better images than those produced by electron scattering. 5-8 

In 1996, Tegze and Faigel produced the first XFH image of a strontium titanate (SrTiO,) 

crystal.’ The reconstructed image clearly showed a strontium atom, though the titanium and 

oxygen atoms were not observed because these atoms have too low an atomic number. The 

atomic scattering factor is proportional to the atomic number. A disadvantage of XFH is the 

limited number of characteristic lines from the elements present in the sample. This problem is 

solved by multiple energy X-ray holography’0-12 (MEXH), which is based on the idea of optical 

reciprocity of XFH and applying X-ray standing waves principles. MEXH uses a plane 

monochromatic reference wave from a source far outside the object, as shown in Fig.1 (b). The 

incident reference wave is scattered by the neighboring atoms and produces spherical object 

waves, which interfere with the reference wave. This interference pattern varies with as one 

changes the direction of the incident beam relative to the specimen. The variation of the 

electrical field intensity at the absorber can be measured by detecting the X-ray fluorescence 

from the absorber. Thus, MEXH allow holograms to be recorded at an arbitrary energy, which 

can suppress the twin-image effect.13’14 
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Fig. 1. (a) X-ray fluorescence holography. (b) multiple energy X-ray holography. 
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Until now, atomic images were obtained only for the major elements of single crystals, 

whose atomic configurations were already known. We produced an XFH of a SrTiO, single 

crystal at the Photon Factory” and predicted that the hologram of a trace element could be 

measured using a third-generation synchrotron-radiation facility, Spring-8. We were able to use 

Spring-8 to measure the hologram of zinc (Zn; 0.02 wt%) doped into a gallium arsenide (GaAs) 

wafer.16 In this paper, we show detailed experimental data of the Zn hologram and our 

mathmatical procedure to obtain the reconstructed image. 

EXPERIMENTAL 

Data for a hologram was produced on synchrotron beam line BL39XU 

(Physicochemical Analysis beamline) at Spring-8 (Super Photon ring-8GeV), Japan 

Synchrotron Radiation Research Institute, Nishi-Harima, Hyogo, Japan. This beamline was 

equipped with an undulator and a Si (111) double crystal monochromator. The GaAs:Zn wafer 
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(001) was purchased from Furuuchi Chemical Co. (Tokyo, Japan). The zinc concentration in 

the wafer was determined to be 1 .O x 1019 atoms cmT3 (0.02 wt%) by a Hall measurement. The 

incident X-ray energy was 9.8 keV, which was between the Zn K and Ga K absorption edges, so 

as to avoid excitation of the Ga and As X-ray fluorescence. The GaAs: Zn wafer emitted 

characteristic Zn X-rays as well as strongly scattered incident X-rays. Since the limit of the 

detector count rate was about five thousand counts per second, the counts from scattered X-rays 

interfered with the detection of the Zn Ka X-ray fluorescence. In order to suppress this 

scattering, the detector was set parallel to the electric field of the incident X-rays. In MEXH, 

the fluorescence yield is measured as a function of the incoming beam direction. However, in 

XFH the X-ray fluorescence intensity from a sample stationary relative to the source is 

measured while scanning the detector. Therefore, we choosed the MEXH method in order to fix 

the detector position. 

Figure 2 shows a schematic illustration of the experimental setup. The sample was 

mounted on a two-axis (0 - 4) rotatable stage. A Si PIN photodiode X-ray detector was placed 

parallel to the incident X-ray electric field, as shown in Fig. 2. 

Fluorescent 

Ionization chamber 
Si PIN detector 

Fig. 2 Schematic illustration of the experimental setup. Zn Ka X-ray fluorescence was 
measured by changing 0 and $I, where 8 was the glancing angle and $ was the 
azimuthal rotation angle. ~- __~~ 
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Figure 3 shows the representative X-ray fluorescence spectrum, exhibiting the strong Zn Ka X-ray 

fluorescence. The integrated intensity in the region between 8.0 and 9.0 keV (shaded area in Fig. 3) 

was measured using a single channel analyzer and an ORTEC 974 counter & timer. 700 data points for 

fluorescence intensities were collected in a hemisphere above the sample while scanning $ and 8. The 

details of experimental condition are shown in Table 1. 
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Fig.3 Representative X-ray fluorescence spectrum of Zn in a GaAs wafer. 

Sample 
Zn concentration 
Experimental mode 
Ring current 
Incident energy 
X-ray fluorescence 
0 
8 
Total time 

GaAs:Zn (00 1) 
0.02 wt% 
MEXH 
19 - 17 mA 
9.8 keV 
Zn Ka 
-100” < c$ c loo”, A$ = 2” 
30” < 8 < 60”, At3 =5” 
13 hours - 

Table 1 Experimental conditions 

RESULTS AND DISCUSSION 

The procedure to obtain a reconstructed image from the experimental data was done by 

normalization, smoothing and mapping of the hologram data using the software of Igor’. This software 

is used for data visualization, analysis and transformation. The measured Zn Ka X-ray fluorescence 

intensity was normalized with respect to the incident X-ray intensity, because the incident synchrotron 

X-ray intensity decayed exponentially during a scan. Figure 4 (a) shows the representative 
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normalized fluorescence intensity at 8 = 55”, I(+, 0=55’). The peak observed at Cp = 162 o is a 

Kossel line,17 which was removed by eliminating 1($=162”, C3=55O). The normalized 

fluorescence intensity I($, 0) was transformed into x(Q, 0) using following expression, 

xcw>= 0hbk+~0(e)>/l,@) (1) 

where I@) was the average intensity over whole 4 scan range. Figure 4 (b) shows the x (4, 

,8=55’). The S/N of the raw data was so poor that anisotropy of the fluorescence intensity 

could not be seen, because the total count in each pixel (- 1 x lo5 counts) was not enough to 

observe the fine structure in the raw data. The solid line in Fig. 4 (b) is the data smoothed twice 

by a 7 point Savitzky-Golay method.” Smoothing clarified the modulation in the anisotropy of 

the X-ray fluorescence intensity. 
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Fig. 4 Angular dependence of the X-ray fluorescence intensity of Zn in a GaAs 
wafer. (a) I($, 8 = 55”); (b) x($, 8 = 55”) . Dotted and solid lines in (b) are 
raw and smoothed data, respectively. 
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Figures 5 (a) is the image of the hologram, x (4, 0) for 0’ I 4 2 200” and 30” 2 8 2 

60”. These data were smoothed by the above mentioned procedure. x (4, 0) was converted to 

x(L &J in Fig.5 @I using following expression, 

k, = Iklsinecos$ (2) 

ky = IklsinOsin@. (3) 

where (kJ is the magnitude of Zn Kcx wave vector (4.97 A-‘). 

The real-space atomic image, U(x, y), was obtained by the use of a two dimensional 

Fourier transform of the quantity x(&, k&l9 

W,Y) = l -----II tik,,k,)exp(ikxk,+ ikyk,)dk,dk, 2xR2 

~~~_~~~ ~- 

(4) 
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Fig. 5 Experimental MEXH hologram of Zn in GaAs wafer. (a) x(c$, 6) and (b) X(kx, ky). 

A fourier transform was carried out by use of NIH Image@ software which is a public domain - 

image processing and analysis program for Macintosh, as shown in Fig.6 (a). The atomic image 

is produced by the environment of Zn atoms on the (001) plane. The reconstruction is affected 
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strongly by polarization of the incident beam. According to the simulation by Len et a1.,2o a 

horizontally polarized incident beam enhances the horizontal atomic structure in our 

experimental configuration.20 The atomic image in Fig. 6 (a) was improved by the polarization 

effect. Four atoms were found in the image at a distance of 4.0 A from the center. This 

distance is the nearest Ga-Ga or As-As distance, revealing that Zn atoms substituted for Ga or 

appeared as As host atoms. We also observed four blurred images of atoms at a distance of 2.0 

A from the center Zn atom in Fig. 6 (a). Since Ga and As layers stack alternately along the c- 

axis; these two layers are separated by 1.41 A, this image was a superposition of two different 

Ga or As layers above and below the emitter, because the spatial resolution along z-axis was 

about 4 A, which was calculated from the incident X-ray wavelength (1.26 A) and the size of 

the hologram.’ Consequently, Zn atoms occupied the substitutional site, but the possibility of 

As as a site substitution may be negligible because of the charge neutrality, as shown in Fig. 6 

1j-J Reconst. (2: 1) pJ: 
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0 Ga at z = 0.0 A 
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Zn at z = 0.0 A 
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Fig. 6 Reconstructed holographic images around a Zn atom (a) and the atomic 
configuration of GaAs (b). 
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CONCLUSION 

The MEXH hologram of 0.02 wt% (200 ppm) Zn in GaAs wafer was measured at SPring- 

8, and produced local atomic images around Zn atoms. These images revealed that Zn atoms 

occupied the substitutional site. Our results show that a strong primary X-ray beam from a third- 

generation synchrotron radiation facility enabled us it to measure the hologram of a dopant in a 

wafer within a reasonable measurement time. The structural analyses of a single crystal using X- 

ray fluorescence holography was reported in 1996, and this method is still useful for determining 

the local structure of a trace element in a single crystal, such as dopants in Si wafers, metals 

atoms in biological macromolecules, and organometallic thin films. In this experiment, the 

intensity of the incident beam was high enough to produce strong X-ray secondary fluorescence. 

An X-ray hologram of impurities in the ppm concentration range and of thin films should be 

possible after the current of the storage of Spring-8 is increased from 20 mA to 100 mA in late 

1998. 
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