Lens-less high-resolution imaging with partially coherent X-ray photons

Coherent X-ray diffractive imaging has made remarkable progress over the past 15 years. The technique basically reconstructs real space microscopic images with the spatial resolution of nm without the use of lenses, mainly because of the ability to retrieve phases. However, it relies on the degree of high coherence of the available X-ray photon beam, and, until now, almost all experimental studies have been subject to some limits. It is not very easy to satisfy the ideal conditions, mainly because of the partial coherence of the beam itself and some decoherence caused by imperfect detection as well as the dynamic motions of the sample. Dr. P. Thibaut (Technische Universität München, Germany) and his colleague have recently reported their analytical studies into extending ptychography by formulating it as low-rank mixed states. The procedure is closely related to quantum state tomography and is equally applicable to high-resolution microscopy, wave sensing and fluctuation measurements. They concluded that some of the most stringent experimental conditions in ptychography can be relaxed, and susceptibility to imaging artifacts is reduced even when the coherence conditions are not ideal. For more information, see the paper, "Reconstructing state mixtures from diffraction measurements", P. Thibault et al., Nature, 494, 68 (2013).

​​

About Us

Conference Info

Powered by Movable Type 7.902.0

Monthly Archives